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Modeling U-Shaped Exposure-Response Relationships
for Agents that Demonstrate Toxicity Due to Both Excess
and Deficiency

Brittany Milton,"* Patrick J. Farrell,"? Nicholas Birkett,>’ and Daniel Krewski'*>

Essential elements such as copper and manganese may demonstrate U-shaped exposure-
response relationships due to toxic responses occurring as a result of both excess and defi-
ciency. Previous work on a copper toxicity database employed CatReg, a software program
for categorical regression developed by the U.S. Environmental Protection Agency, to model
copper excess and deficiency exposure-response relationships separately. This analysis in-
volved the use of a severity scoring system to place diverse toxic responses on a common
severity scale, thereby allowing their inclusion in the same CatReg model. In this article, we
present methods for simultaneously fitting excess and deficiency data in the form of a single
U-shaped exposure-response curve, the minimum of which occurs at the exposure level that
minimizes the probability of an adverse outcome due to either excess or deficiency (or both).
We also present a closed-form expression for the point at which the exposure-response curves
for excess and deficiency cross, corresponding to the exposure level at which the risk of an ad-
verse outcome due to excess is equal to that for deficiency. The application of these methods
is llustrated using the same copper toxicity database noted above. The use of these methods
permits the analysis of all available exposure-response data from multiple studies expressing
multiple endpoints due to both excess and deficiency. The exposure level corresponding to
the minimum of this U-shaped curve, and the confidence limits around this exposure level,
may be useful in establishing an acceptable range of exposures that minimize the overall risk
associated with the agent of interest.
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1. INTRODUCTION

The establishment of a daily recommended in-
take of an essential nutrient requires determination
both of the minimum intake that will satisfy nutri-

tional requirements and the maximum tolerable in-
take that will not result in toxicity.”! Because too
much or too little of any such nutrient can be harm-
ful to human health, the challenge is to define an
allowable range of oral intakes that will not result
in adverse health outcomes due to either excess or
deficiency. The modeling of exposure-response rela-
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tionships for both excess and deficiency provides the
foundation for meeting this challenge.

Historically, the U.S. Environmental Protection
Agency (US. EPA) developed the concept of a
reference dose (RfD) for toxic substances, which
has been widely accepted and used in practice.
The RID is defined as the level of oral intake of

0272-4332/17/0100-0265522.00/1 © 2016 Society for Risk Analysis

ED_002191_00008780-00001



266

a substance that can be ingested over an extended
period of time without appreciable risk of an adverse
health outcome. It is usually derived from a single
key study that considers one critical health effect.
The RfD is obtained through the application of
adjustment factors to the no-observed-adverse-
effects level (NOAEL), which corresponds to the
level of exposure that does not result in a significant
increase in the risk of adverse elfects in the exposed
group when compared with controls.””> The bench-
mark dose (BMD), which is the dose corresponding
to a specified increase in risk'¥ (usually in the range
of 1-10%). has also been used as a point of depar-
ture on the dose-response curve for establishing
human exposure guidelines.'¥ More recently, the
signal-to-noise crossover dose (SNCD), defined as
the dose at which the uncertainty in the biological
signal is indistinguishable from the background noise
has been introduced as an alternative to the BMD.®
Categorical regression has found application in dose-
response modeling for risk assessment purposes.(®®
By assigning severity scores to different health
endpoints, categorical regression facilitates their
inclusion in a single exposure-response model.
Chambers et al.®® used U.S. EPA CatReg
software to conduct a categorical regression anal-
ysis using the copper toxicity database developed
by Krewski et al'® Using this tool, Chambers
et al® were able to fit exposure-response curves
for Cu excess and deficiency separately, and
identified an optimal copper intake level of 2.6
mg/day. The current U.S. recommended dietary
intake (RDI) is 0.9 mg/day, while the tolera-
ble upper intake level is 10 mg/day.) Of the
procedures noted above for establishing human
exposure guidelines, the RfD relies to a consid-
erable extent on expert opinion. This includes
specification of the most critical effect, which may
be subject to toxicological interpretation. While
similar issues arise with the BMD, the main concern
is that several exposure-response models could
appropriately characterize the observed data, but
could lead to different risk predictions outside the
range of the available data. Perhaps the most limiting
feature of the RfD, BMD, and SNCD approaches
is that the safe exposure level ultimately relies on
one critical health effect from a single study. Cat-
egorical regression addresses this issue by using all
of the available data, including data from different
studies with different endpoints, in a single analysis.
Chambers et al® applied categorical regression
to the copper toxicity database noted above, but
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considered excess and deficiency separately, and
used a splicing procedure to combine the excess and
deficiency exposure-response curves.

In this article, a joint model for excess and
deficiency—the JMED—is proposed. The JMED is
defined so that the dose and origin of toxicity (excess
or deficiency) predict the probability of an adverse
health effect. We present a closed-form solution
for the point at which the excess and deficiency
curves in this joint model cross. We present a second
model based on the assumption that the toxicological
processes leading to excess and deficient responses
are independent, with the component excess and
deficiency curves based on the JMED. Identifying
the optimal intake level from this curve, defined as
the dose that minimizes the probability of an adverse
response due to either excess or deficiency (or both),
requires the use of numerical optimization. The
remainder of this article focuses on the theoretical
development of these two models, and their practical
application in describing U-shaped dose-response
curves for copper excess and deficiency.

2. METHODS

2.1. Categorical Regression Applied to
Toxicological Data

Categorical regression is a statistical tool that
can be used to estimate the probability of an adverse
health outcome associated with health risks from
exposure to toxic substances.(!®) These health effects
are assigned to ordinal severity categories: a simple
three-category severity scoring system, for example,
might represent no effect (severity 0), a mild effect
(severity 1), or a more severe effect (severity 2).
This tool is appealing to risk assessors because it
facilitates the use of multiple independent variables,
such as concentration and duration of exposure, to
describe multiple adverse outcomes through the use
of a common categorical severity metric.

Although categorical regression is a power-
ful tool for toxicological risk analysis,"? it too is
subject to limitations. Toxicological judgment is
needed to rate the severity of the observed effects
and to categorize the effects across multiple studies
in a consistent manner.”*? Although a model may
appear to fit the data well, there is no way to evaluate
the accuracy achieved in extrapolation beyond the
range of the available data.!"” Finally, categorical
regression is statistically driven: no information on
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the biological processes underlying the induction of
adverse health outcomes is used in developing the
model.

Categorical regression involves an ordinal re-
sponse variable. In the general case, the response
is composed of § ordered categories. In developing
the concept of categorical regression, it is helpful to
begin with the special case in which the response falls
into one of two categories (S = 2), with or without
order being assumed.

2.2. Binary Logistic Regression

Consider a vector of random variables, Y, which
can each take on one of two possible values, coded
0 or 1. Given a data set of n independent obser-
vations, Y can be considered a column vector of n
Bernoulli random variables that can be described us-
ing a binary logistic regression model.*** For the i
observation (i = 1,.., n), Y; = 1 represents a “suc-
cess” in the Bernoulli sense (the occurrence of an
adverse outcome in the present application), with
Y; = O representing a “failure” (here, the absence of
an adverse outcome). As in any regression model,
there is an underlying assumption that the response
variable is related to one or more of K explana-
tory variables, Xy, ..., Xg;, according to a specified
functional relationship. For the case of the Bernoulli
random variable Y;, its associated success parame-
ter m;, is modeled as P(Y,; =1|x3;, ..., Xx;) = 7;, with
P(Y, =0|x3,...,Xxg;) = 1 —7;, and is referred to as
the link function. The link function is often taken to
be the logistic function since it is easily converted
to a linear (or nonlinear) relationship by the /ogif
transformation.!"¥ For illustrative purposes, we will
assume a linear relationship. The logistic function de-
fines P(Y; =1|xy;, ..., Xg;) as:

o= eXp(IBO + BiXy + o+ ,SK’XK,')
T T exp(Bot Bixu + -+ Prxr)’

where 7; € (0,1) and g7 =[8s, B, ..., Bx] is a vec-
tor of regression parameters consisting of an inter-
cept term, By, and slope parameters By, ..., Bx. The
logistic regression model equates the logit transform
to the linear component:

ey

T

K
logit(m;) = ln< > = Zﬁkaz =p'X, (2)
pars

1—-x f
where X is an n x (K + 1) matrix containing a col-
umn vector of 1s followed by the vectors

x| = [xi, %20, ., XK ]
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2.2.1. Parameter Estimation

The goal of binary logistic regression is (o
estimate the K+1 unknown parameters in Equa-
tion (2), which can be done using the method of
maximum likelihood.?*'¥ The maximum likelihood
estimator is based on the probability distribution of
the dependent variable, Y. Since each Y, represents
a Bernoulli random variable for the i** observation
and these Y, are independent, the likelihood of the
data is:

7]

cly) =[] =" @ —=)t, ©)

(e

where 7; is defined in Equation (1) and y; is the
observed value of Y;, taking on a value of either 0
or 1. The maximum likelihood estimates (MLEs) are
the values of B that maximize the likelihood function
in Equation (3). The critical points of a function
{maxima and minima) occur when the first derivative
equals zero. If the second derivative evaluated at
that point is less than zero, then the critical point is a
maximum. Finding the MLEs requires computation
of the first and second derivatives of the likelihood
function. This procedure is simplified by using the
log-likelihood function, which is simply attained by
applying the natural log transform to Equation (3),
giving:

/= log£:Zyl- log (ni)—l-Z(l—y’i)log (1—m). (4)
[ i=t

Maximality will be preserved since the logarithm
is a monotonic function. To obtain the MLEs, we
differentiate Equation (4) with respect to 8; for
j=0,...,K, and find the point B at which the
derivative is equal to zero using a Newton Raphson
algorithm. The variance-covariance matrix associ-
ated with the estimator 8 of 8 is simply the negated
inverse of the information matrix. Finding the MLE
B of B, as well as an estimate of its asymptotic
covariance matrix is easily accomplished using a
standard statistical software package such as R.("")

3. JOINT MODEL FOR EXCESS
AND DEFICIENCY

A JMED can be created using a logistic regres-
sion model of the type discussed above. We define
the response variable in such a way that it captures
whether or not the i observation exhibits an ad-
verse health outcome, which can occur as a result
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of an excess or deficient condition. Specifically, we
define:
{ 1, for an adverse response
Y; = . e
0, for a homeostatic response.

We shall use an indicator variable in the JMED
to identify whether an adverse outcome was due to
an excess or deficient condition within a given study.
To illustrate the development of the JMED, we as-
sume for simplicity that the probability of an adverse
response depends only on a single covariate reflect-
ing the level of exposure, and its interaction with the
indicator variable described above. In this case, the
JMED is given by:

exp(fo + Bixy; + BoXor + BaXyiXy)

P(Y; = 1) = :
( ) 1+ exp(By + Bixu + Boxy + BaXyXy)

(5

where x;; is the most appropriate measure of ex-
posure concentration (e.g., untransformed, natural
logarithm, or logarithm base 10) for the i%* obser-
vation and xy; =1 if the i observation is due to ex-
cess, and O otherwise. Given the type of departure
from homeostasis under investigation (excess or de-
ficiency), the JMED above describes the probabil-
ity of an adverse response at a specified exposure
level. The inclusion of an interaction in the JIMED
permits the relationship between the probability of
an adverse response and exposure concentration to
be different depending upon the type of departure
from homeostasis. Specifically, the JMED describes
the probability of an adverse response due to excess
exposure as:

expl(Bo-+B2)+(B1+B3)xii]

1+exp[(Bo+B2)+ (B +B3)x ] ©)

P(Yp,=1) =

and

1y — exp(Bo + Bixu)
P(Yp, =1)= 1+ exp(fo + frxer)’

for insufficient exposure (deficiency). Assuming
Bi < 0,83 >0,and 81+ B3 > 0, adisplay of P(Yg, =
1) and P(Yp, = 1) versus x;; would appear as in
Fig. 1.

As will be illustrated in Section 3.3, the JMED can
easily be extended to include other covariates.

()

3.1. Equiprobable Crossover Point (EPCP)

The point where the excess and deficiency
curves cross corresponds to the level of exposure
at which the probabilities of adverse effects due
to excess or deficiency are equal and will be re-
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Probability of an Adverse Response
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logioConcentration, with Concentration measured in mg/kg bw

Fig. 1. Components of the JMED based on logyy exposure con-
centration: excess {green) and deficiency (blue) logistic regression
curves {colors visible in on-line version).

ferred to here as the EPCP. The EPCP has a
closed-form solution since the intersection point
between the two logistic regression equations for
excess and deficiency can be solved algebraically.
Setting Equation (6) equal to Equation (7) and
solving for x;; leads to:

EPCP = —& (&)
B3
which is estimated by:
Bpcp = -2 ()
B3

3.1.1. Properties of the EPCP

First- and second-order Taylor series expansions
of —f,/f about =8, and By=p; can be used
to derive approximate expressions for the bias and
variance of the estimator, —f/fs. Considering the
general case, —p;/f ;, a first-order Taylor series ex-
pansion can be employed to obtain an approximate
expression for Var[—g;/B;], which can by estimated
by:

. Bl o1 s s B var(h

~25; S PO
i cov(Bi, B;) = C'%4,,C, (10)

where S , 18 a reduced estimated asymptotic
covariance matrix composed of the rows and
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columns of £, associated with B; and j;, and C is a
p-dimensional vector containing the coefficients
—1/B ; and Bi/B jz in the first-order Taylor series
expansion evaluated at 8 =, and with the remaining
components all zero. The nonzero coefficients are
located in C based on the relative positions of g; and
B; in the logistic regression model. The second-order
Taylor series expansion can be employed to propose
an approximate expression for Bias[—p;/8;], which
can be estimated by:

— | B B s | RPN
Bias ]:—?:I %—E Var(,b’»—kﬁ cov(p, B;). (11)
Assuming for the time being that the bias in the
estimator of the EPCP is negligible, Equation (10)
may be used to propose a 100(1 — o) % large sample
confidence interval™ for —g;/8;, namely,

B " Bi
— —F7; «ASE| -~ 1|, 12
B; -3 ]: 5;} (12)

where ASE[-5;/,] = |/ Var[-3:/B;].

3.1.2. Odds of an Adverse Response at the EPCP
The logit function evaluated at the EPCP

= (EPCP)

logit [z (EPCP)] = log [m

IKE
represents the log odds of an adverse response at the
EPCP. Note that the expression for the log odds eval-
vated at the EPCP will be identical for the excess and
deficiency cases, since this is the point where the two
curves intersect. For simplicity, consider the case of
a deficiency study when xy; = 0. The log odds at the
EPCPis:

7 (EPCP) _ Bz
log [1 s <EPCP>] =fot b (‘E)

B1B2
B

Note that the expression for the log odds at the EPCP
for an excess study is the same. Using the same ap-
proach employed to develop a confidence interval
for the EPCP, namely, Taylor series expansions, it is
possible to establish approximate expressions for the
bias and variance of the estimator of the expression
for the log odds in Equation (14).

= B —

(14)

0R

Probebility of sn Adverse Response

logipConcentration, with Concentration messured in mg/kg bw

Fig. 2. Example of a U-shaped exposure-response curve calcu-
iated using the independence model based on logyy exposure
concentration.

3.2. The Independence Model

The JIMED provides a means for estimating the
probabilities of the occurrence of excess and deficient
conditions, P(Yg, =1) and P(Yp, =1) at concentra-
tion level x;; using Equations (6) and (7)., respec-
tively. The independence model (IM) represents an
extension of the JMED, in that it allows for the con-
struction of a single U-shaped curve to describe the
excess and deficiency data simultaneously, under the
assumption of independence between these two com-
ponents of the data. If we assume that for a given sub-
ject with concentration xy;, the presence or absence
of an excess condition is independent of a deficient
one (and vice versa), we can write the probability that
this subject experiences an adverse outcome due to
either excess or deficiency, or both, as follows:

Prur = Pp + Py — PPy, (15)

where PD = P(Y}[)J. = 1) and PE = P(YEE = 1) We
refer to Equation (15) as the IM. The IM uses the
excess and deficiency probability equations from the
JMED, and provides a means of modeling excess and
deficiency simultaneously under the assumption of
independence of these two outcomes.

3.2.1. Investigating Xyw pUg

Assuming 8¢ < 0 and Bz > 0, the graphical rep-
resentation of Py is a U-shaped curve, as shown in
Fig. 2. Interest lies in finding the exposure level that
occurs at the trough of this curve, as this corresponds
to the exposure level that minimizes the overall risk
due to excess or deficiency. This point will be notated
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as Xy pui- 10 calculate X pug, it is necessary to
find the value of xj; that minimizes Pp 5. We set:

aPpup
ax;,

Al

0,

where

BP UE o
2P = 2 [Pp + Py — PPl
BXL- aXE,‘

As there is no closed-form expression for xj,, this
value is obtained numerically using the Newton
Raphson algorithm. Since itis not possible to derive a
closed-form expression for Xy pun, a bootstrap ap-
proach to confidence interval estimation for Xy~ pue
will be employed. With this approach, B bootstrap
samples are generated from the original data set, and
)A(S\Z;V pupr D =1,... B, is calculated for each. Using
these estimates, it is possible to obtain a 95% boot-
strap confidence interval for Xym pug, given by:
)] N
(XMIN DUEJ0.025]" “MIN DUE[0.975 }) ;
where ﬁ;&\ DUE[0.025

2.5'" and 97.5™ percentiles of the empirical distribu-

+ (B
1 and &gy ppo.o7s; Tepresent the

tion of the B values for %(xﬁx pue- A similar procedure
may also be used to obtain a bootstrap confidence in-
terval for the EPCP, as an alternative to the asymp-
totic standard normal confidence interval discussed
previously.

3.2.2. Odds of an Adverse Response at Xpzw pug

The odds of an adverse response occurring at
xXwviN pu may provide a useful measure of risk in risk
assessment applications. Consider the logit function
evaluated at Xy pus. Which represents an expres-
sion for the log odds of an adverse health effect at
AMINDUE *

7 (Xaerv pUE) }

logit [7 (xyan pur)] = log [ 1= 7 (Xt por)

For a deficiency condition, the log odds are:

X; DB 5
lo [W} = fo + BiXur pugs (16)
1 — 7 (Xvanpug)

and the corresponding odds are exp(Bs+ B1XnmiN pUE)-
Similarly, for an excess condition, the log odds and
odds are:
log [ 7 (XM DUE)
1 — 7 (XviN pup)

+(B1 + B3)Xvin puE, (17)

:[:/80+ﬁ2
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and exp(Bo + B2 + (Bt + B3)Xmnpup), respectively.
Note that it is possible to derive standard normal con-
fidence intervals for the above log odds quantities us-
ing the same asymptotic approach as was used for the
EPCP.

3.3, Stratification by Species

A natural extension of the JMED is the inclusion
of additional variables to account for interspecies dif-
ferences, thereby creating opportunities for species-
specific analyses. In what follows, methods are
developed for comparing different species; mo-
tivation for this lies in the example presented
in Section 5 where data collected on mice, rats,
and humans are analyzed. This extension re-
quires the addition of indicator variables to the
JMED considered in Equation (5). The character-
ization below allows rich data from one species
to fill in sparse data gaps in another species.
For the purpose of the application presented in
Section 5, we define:

1, if the ™ observation is based on a
X3 = mouse study
0, otherwise,

and

 — 1, if the i observation is based on a rat study
¥ =10, otherwise.

Note that humans are accounted for when x3; =Xy =
0. All possible two-way interaction terms will also
be included in the IMED, providing species-stratified
intercept and slope coefficients for the excess and de-
ficiency curves. This representation facilitates unique
excess and deficiency models for humans, rats, and
mice. Recall x;; is exposure concentration for the i
observation and xy; = 1 if the i™ observation is due
to excess, and 0 otherwise. The probability of an ad-
verse outcome may be expressed as:

exp (ZLU BiXw)
1+ exp (ZZZO BiXwi)

P(Y, =1)= , (1)

where
9
Z Xii B = PoXor + fiXy + PoXo + B3Xs + faXy
k=0

+BsXsi + BeXei + PrXyi + PsXs + BoXor,
in which Xg; =1, Xs5; =X1; Xz, X = X1, X3, X7; = X1 X4,
Xg =Xy Xy, and X¢ =Xp;X4;. Note that it is not nec-
essary to use the complex model in Equation (18) if

ED_002191_00008780-00006



Modeling U-Shaped Exposure-Response Relationships

there is sufficient data available for the species of in-
terest; in this case, the JIMED in Equation (5) can be
applied separately to data from different species. In-
clusion of data from multiple species within the same
model may be helpful in the presence of limited data
on one or more species, although this will entail as-
sumptions about the relative potency of the agent of
interest in different species. Even with adequate data
on all species of interest, fitting the JMED to all avail-
able data for all species may be of interest in terms of
providing an overall parsimonious description of the
data for all species.

3.3.1. Species-Specific EPCPs

By specifying the species-related indicator vari-
ables (x3; and x4) appropriately, we can create
exposure-response models for humans, mice, or rats.
The exposure-response model for a deficiency study
in humans is:

exp (Bo + BiXy)
1+ exp(Bo+ Bixu)

P(YD;' = 1) =

For an excess study, the exposure-response model for
humans is:

P(Y S 1) — exXp (IBU + /62 + (,81 + ﬁfa)Xl,')
N 1+exp(Bo+ B+ (B + Bs)xu)

Equating P(Yp, = 1) = P(Yg, = 1) and solving for
Xy; provides:

EPCPy = —é
Bs

Similarly, the EPCP for mice is:

EPCPy — Bt ,33’
5
and the EPCP for rats is:
EPCPy = 2P
Bs

It is possible to derive approximate expressions
for the bias and variance of the EPCP estimators of
these quantities using Taylor series expansions, as
demonstrated in Section 3.1.1. Moreover, it is possi-
ble to compute the odds of an adverse response and
appropriate confidence intervals using the same ap-
proach as was employed in Section 3.1.1.

21

3.3.2. Species-Specific xymnoug.

The species-stratified JMED gives rise to ex-
cess and deficiency exposure-response models for
each species. These models can then be used to
determine species-specific IMs that permit the iden-
tification of xympur for each species. The Newton
Raphson algorithm can be used to solve for each
Xsanpun, While a bootstrap approach may be used
to construct a confidence interval for each of the
species-specific xypnpup values. Note that it is also
possible to compute the odds of an adverse response
at each xawpup and a corresponding asymptotic con-
fidence interval. The same approach is employed as
in the case of the EPCP; specifically, in developing
an expression for the asymptotic variance of the odds
at Xnawpug, Xvmebur 18 treated as a constant and en-
tries from the asymptotic covariance matrix are used
where required.

4. SIMULATION STUDY

To investigate the statistical properties of the
methods described in Section 3, a simulation study
was conducted to establish their validity. For sim-
plicity, we focus only on the JIMED and IM without
species stratification.

4.1. Simulating the EPCP
Consider the model in Equation (5); namely,
T, = P(Yi = 1)

o exp(Bo + Bixy + Baxai + B3XiiXa)
14 exp(Bo + Bixy; + BoXai + B3XeiXy)

with xy; representing the log,, concentration of the
it observation and x; an indicator variable for ex-
cess or deficiency. Here, By=—2.5, g1 =-3.3, f=
1.5, and p3=4.5, yielding EPCP= —0.33 logarithm
base 10 of the exposure concentration. These val-
ues are chosen to be similar to the estimate of the
B parameter vector obtained when fitting the above
model to the data set considered in Section 5. This
data set consists of 3,886 observations: 1,943 observa-
tions are from deficiency studies and 1,943 are from
excess studies. Each observation also had available a
log concentration measure and a species identifier.
Initially, we generated a single simulated data
set by compuling 7;, given in the model above, for
each observation in the actual data set discussed in
Section 5 that is available for analysis. For a given
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observation i, a simulated response, Yf‘r), is gener-
ated from a Bernoulli distribution with parameter
m;. The generated Y;” along with the values for
xy; and xy; in the data set described above were
used to fit the model in Equation (5), providing
estimates ,8(’) ,6] ,31”, /33 , and an associated es-
timated asymptotic covariance matrix. These esti-
mates then allowed for the computation of a point

estimate of the EPCP, EPACPW, along with an ap-
proximate 95% large sample confidence interval us-
ing the formula in Equation (12). This procedure
was repeated 1,000 times, providing 1,000 point esti-
mates of the EPCP and their associated normal con-
fidence intervals. Over the 1,000 replications, the av-

erage EPACPV) was —0.3269, which compares very fa-
vorably to the true EPCP of —0.33. In addition, we
determined the coverage rate of the 95% confidence
intervals to be 95.4%, which is quite close to the 95%
nominal level.

A bootstrap approach could also be used to
obtain a confidence interval for EPCP. For exam-
ple, if we consider the r™ simulated data set de-
scribed above with associated parameter estimates
3(;") ﬁ{}”) 'S(r) and ,éi/),
puting yrz.( ) for al] i by replacing Bs, ..., s in Equa-
tion (5) with ,§ ,8”) ,3(”, and BM For each given
observation i, a bootstrap response, Y‘ UGN gen-
erated from a Bernoulli distribution Wlth parame-
ter 7", The generated Y\ along with the values
for xy; and xx in the data set described above are
then used to fit the model in Equation (5), providing

) Ar)B) ~ ()(D) .
/'3( 1) ﬁlr) !, i}“), and B, These estimates are

we would proceed with com-

) o (D)

employed to compute the estimate EPCP". For
the % simulated data set, if we repeat this proce-
dure for b =1, ..., B bootstrap samples, we can de-

termine B estimates El’ACP(r:)Hib), which can be used
to determine a 95% bootstrap confidence interval for
EPCP given by:

(EPCPy 50, EFCPY 0% )

where EPC P\O)éii and EPC P‘g’;., represent the 2.5

and 97.5" percentiles of the cmplrical distribution

of the B values for EPC P( ) . For each of the r =
1, ..., 1,000 data sets that we simulated, we gener-
ated b=1,..., 1,000 bootstrap samples, using the
latter to compute a 95% bootstrap confidence inter-
val for EPCP for each simulated data set. We deter-
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Table 1. Percent Relative Bias (RB), Relative Standard
Deviation {R5D), and Relative Mean Square Error (RMSE) of
EPCP Along with Percent Coverage Rates (CVG) for 95%
Standard Normal (SIN) and Bootstrap (B) Confidence Intervals
for Selected Values of £z

CVG (%)

B:  EPCP  RB(%) RSD(%) RMSE(%) SN B

0.6 —1.66 20 8.8 8.7 958 952
1 -1 0.2 10.3 10.3 961 96.1
1.5 —0.66 0.8 114 114 955 949
2 —{1.5 ~0.5 131 13.6 945 945
25 -0.4 -1.0 14.2 14.2 947 945
3 -{1.333 1.3 151 15.6 951 944

mined the coverage rate of the bootstrap confidence
intervals that covered the true EPCP to be 94.5%,
which is very close to the 95% nominal level, and
similar to the coverage of the standard normal con-
fidence intervals (95.4%) noted above.

The approximate variance and bias formulae
given in Equations (10) and (11) for the EPCP are
sensitive to the values of 83 and Var [gs], respec-
tively. We therefore conducted a simulation study to
investigate the impact of the size of g relative to
the other g parameters in the model on the bias of
EPCP. Specifically, we repeated the simulation de-
scribed in Section 4.1 where the parameters By, 1, 52
were set to —2, —0.5, and 1, respectively, with dif-
ferent values of B; ranging from 0.6 to 3. These val-
ues were selected so that 81 + B3 > 0. Asindicated in
Table I, the relative bias is essentially negligible (less
than 2% in all cases considered), with the relative
mean squared error being at most 15%.

In calculating the Monte Carlo simulation error,
we assume that the coverage rate of the confidence
intervals lies within three standard deviations of the
nominal level, 95%. Since 1,000 replications were run
for each chosen value of 83, the Monte Carlo sim-
ulation error on the coverage probabilities can be

approximated as 3\/ o oogﬂ = 0.02, which indicates

that the proportion of intervals that contain the true
EPCP should lie between (0.93, 0.97). No evidence of
inaccurate coverage is seen for any of the values of 83
considered in Table 1.

4.2. Simulating the Xy pug

In order to simulate Xyynpup presented in
Section 3, we consider the IM given in Equation (15),
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where:
‘ exp(—l + Xli')
P(Yg, =1) = ’
(Y, ) 1+ exp(—1+ xy)
—2.5 —3.5%y;
P(Yo 1) exp( Xii)

1 +exp(—2.5 —3.5xy)

The values of 8g, B1, B8, and B are used in the
validation procedure for EPCP. The same sample
size (1,943 observations on excess, 1,943 observations
on deficiency) was also used. The Newton Raphson
algorithm was initialized with x;; = 0.1 with a conver-
gence criteria of ¢ = 10~%. The algorithm converged

—-0.00971661 of the logarithm base 10 concentra-
tion, which is the true value of Xumiw pup With these
parameters.

In order to evaluate the procedures proposed
in Section 3 for estimating Xymwpug, as was done
for EPCP, we generated a single simulated data set
using Equation (5) by computing 7; for each ob-
servation available for analysis in the data set in
Section 5. For a given observation, i, a simulated
response, YU, is generated from a Bernoulli distri-
bution with parameter ;. The generated Yfr') along
with the values for xy; and le wcre fit to the model
in Equation (5), providing ,80 , ,B(Er' ,8('), and ,@3").
This procedure was repeated 1,000 times, to gener-
ate 1,000 simulated g parameters. For each of these
r=1,...1,000 simulated data sets, we obtained an
estimate of X ‘{\H\ID 5. The average of these 1,000 es-

timates for X](\A),N pug is —0.0103, which is close to the
true value of Xy puE.

Unlike EPCP, it is not possible to obtain a
closed-form expression for Xymwnup. Thus, in or-
der to determine a confidence interval for the lat-
ter quantity, a bootstrap technique analogous to the
one used for the EPCP was employed. Suppose we
consider one of the 1,000 simulated data sets de-

scribed above with associated parameter estimates
{r) (r}

181); 7131 716‘/)7 and ﬁ

puting n( ). For each observation, i, a bootstrap re-

{rih)

. We may proceed by com-

sponse, Y; "7, is generated from a Bernoulli distri-

bution with parameter 71(

(5) was fit to the generated Y\' ’\,”, along with the

Wby 2{r )by A0rib)
values for x;; and xu. providing g ) ,8”)‘ ), BY,

and ,8(”“) To obtain one bootstrap estimate of

Xuvin Dug, denoted as ﬁgq)l(h)n gy We applied the New-

ton Raphson algorithm to minimize Ppg evaluated
at ,8(”(6’ B/ (r)(®) ,8(”(6’, and Egr')(b). Within one sim-

The model in Equation
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Table II. Percent Relative Bias (RB), Standard Deviation
{RSD). and Mean Square Error (RMSE) of Sy pup Along with
Percent Coverage Rates (CVG) for 95 % Bootstrap Confidence
Intervals for Selected Values of 25

B Xumipns RB{%) RSD(%) RMSE (%) CVG(%)
06 —0.12 155 140.8 1416 96.7
1 ~1.00 35 255 25.7 96.2
15 —1.06 1.5 L5 11.6 97.0
2 ~090  —0.02 8.4 8.4 93.0
25 075 0.3 8.1 8.1 92.0
3 —064  —02 85 8.5 94.0

ulated data set, we generated 1,000 bootstrap sam-

ples, and determined &0}, .. b=1,...1,000 for
each bootstrap sample. Using these estimates, we
can obtain a 95% bootstrap confidence interval for
XMIN DUE, given by:

Al ib) PNEITE)
AN DUE]0.025) “MIN DUE[0.975] ) 2

&b} Srib) .
where %1\ burgo.0s) 209 Rygnbuggo.07s) Tepresent the

2.5%" and 97.5'" percentiles of the empirical distri-

bution of the 1,000 values for )A(]t]’i(f’uu For each

of the r=1,..., 1,000 data sets that we simulated,
we generated b=1, ..., 1,000 bootstrap samples, and
computed a 95% bootstrap confidence interval for
X oug for each simulated data set. We determined
the coverage rate of these 95% bootstrap confidence
intervals that cover Xygnpur to be 94.2%, which is
very close to the 95% nominal value.

The results as summarized in Table IT indicate no
significant concerns with respect to bias or coverage
probability.

5. DATA EXAMPLE

5.1. Application to a Copper Toxicity Database

After completing a detailed literature review
and applying appropriate inclusion/exclusion criteria,
Krewski e al.(!% developed a comprehensive Cu tox-
icity database designed for the application of cate-
gorical regression. Relevant information, including
species, age, sex, route of exposure, concentration,
and duration of exposure, was abstracted from each
study and stored in a computerized database. Ad-
verse health outcomes reported in each study were
noted and severity scores were assigned to each. The
elaboration of the severity scoring system for copper
excess and deficiency summarized in Table III was
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Table Il Thirteen-Level Severity Scoring System for Copper
Excess and Deficiency

Severity
Cutcome Score (5) Physiological Response
—6 Death
-5 Serious irreversible gross
deficiency
Deficiency -4 Reversible gross deficiency
-3 Metabolic perturbation
-2 Early biological indicators of
deficient Cu levels
-1 Homeostatic adaptation to low
intakes
Homeostasis it No effect
1 Homeostatic adaptation to high
intakes
2 Early biological indicators of
accumulated Cu
3 Metabolic perturbation
Excess 4 Reversible gross excess
3 Serious irreversible gross excess
6 Death

guided by a detailed review of indicators of toxicity
from excess and deficiency.(*>

Chambers et al.'® made modifications to the Cu
toxicity database in preparation for their categorical
regression analysis. These modifications include a
redefined dose metric to allow for mterspecies dif-
ferences related to body weight, as well as conserva-
tively using the most severe health effect to represent
an entire exposure group. To facilitate the applica-
tion of binary logistic regression for our analysis, two
further modifications were made. The first modifi-
cation involved converting data from group level to
individual level. Chambers et al® performed cate-
gorical regression using group-level data; each entry
in their copper database corresponded to one exper-
imental group. In our analysis, group-level data were
converted to individual-level data by replicating each
group-level observation based on the size of each ex-
perimental group. Each subject in the experimental
group was assigned the same severily score. The sec-
ond modification involved dichotomizing the ordinal
response variable §, which represents the severity
of the outcome for either excess or deficiency. This
dichotomous parameterization is given by:

)1, for S| =2
Y’—{O, for |S] < 1.

A 13-point severity matrix was developed and
applied to the copper database. We investigated the
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effect of the choice of the cut-off severity score in
the parameterization of the response variable for the
JMED and found the JMED to be robust against the
choice of the cut-off score. For example, if |S| <2
had been selected as the cut-off point, the estimates
for EPCP and xuiw pug (0.46 and 0.98 mg/kg bw/day)
are nearly identical to those obtained when |$§| <1
(0.47 and 0.98 mg/kg bw/day). However, notably
different results were obtained for |S| <3 (0.14
and 0.1 mg/kg bw/day for the EPCP and Xpin puss
respectively). The Cu toxicity database contains a
Jarge collection of independent variables available
for analysis, including categorical (species, age, and
sex) and continuous (concentration and duration)
covariates. Although different transformations of
concentration could be considered and explored,
preference was given to the logarithm base 10 trans-
formation since Chambers et al‘® and others!®”
have chosen this exposure metric in similar work.
The effect of duration was not significant, and
species was the only significant categorical variable.
Although an extensive series of sensitivity analyses
would be of value in exploring the effects of different
analytic decisions, we will confine our altention
here to a more limited, illustrative application of
the new methods of exposure-response analysis
for a U-shaped exposure-response relationships
based on the modeling techniques introduced in this
article.

To illustrate the application of the methodology
developed in Section 3, we consider a subset of the
data composed of 1,943 deficiency observations and
1,943 excess observations. All available deficiency
observations were used in the analysis. To provide
equally sized excess and deficiency data sets, 1,943
excess observations were randomly selected from all
3,300 available excess observations. We chose this
subset so that the excess and deficiency data carried
equal weight in the analysis. Within the deficiency
data set, there are 131, 368, and 1,444 human, mouse,
and rat observations, respectively. Within the excess
data set, there are 769, 322, and 852 human, mouse,
and rat observations, respectively.

5.2. Representations of the JMED

Fitting the IMED in Equation (5) to the data set
of 3,886 observations provides estimates of 8y, 81, B2,
and B;, equal to -2.5, -3.5, 1.5, and 4.5, re-
spectively, along with an associated estimated co-
variance matrix. The JMED provided a significant
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Fig. 3. Components of the IMED for all species in the Cu toxicity
database: excoss (green) and deficiency (blue) logistic regression
curves.

improvement in fit compared to the null model
(p < 0.001 based on the likelihood ratio test);
all regression coefficients were significantly differ-
ent from zero (p < 0.001 based on the Wald
statistic). A plot of the resulting excess and de-
ficiency curves resulling from this fit is given in
Fig. 3.

5.3. Estimating the EPCP

The EPCP is estimated as —0.33 of the logarithm
base 10 transformed concentration, with concentra-
tion being measured in mg/kg bw. Thus, at an expo-
sure level of 0.47 mg/kg bw, adverse health effects
of specified severity attributed to excess or deficient
amounts of Cu are equally likely. Equation (12) facil-
itates the construction of a 95% confidence interval
for the EPCP, which suggests that the concentration
at which the probabilities of an adverse effect due to
excess and deficiency are equal lies between 0.42 and
0.53 mg/kg bw. However, species differences compli-
cate the utility of this estimate in making inferences
about human risk.

5.3.1. Odds of an Adverse Response at the EPCP

Using Equation (14), the log odds of an adverse
response at the EPCP are estimated as —1.4, with the
corresponding odds being 0.25. Thus, at the EPCP,
a severity score |§] > 2 will occur 33% of the time,
while the complementary response |S| < 2 will occur
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¥ig. 4. The U-shaped curve genecrated by modeling Pnyp under
the IM for all species in the Cu toxicity database.

67% of the time. The occurrence of a homeostatic
response is clearly favored at the EPCP.

5.4. Results from the Independence Model:
XMIN DUE

Using the JMED fit in Equation (5) along with
the assumption of independence between toxicity
due to excess and deficiency allows for the estima-
tion of Pryup over the range of exposure levels of
interest, represented by logarithm base 10 concen-
tration (Figs. 3 and 4). Using the Newton Raph-
son method, Xy pug 1S estimated as —0.01 of the
logarithm base 10 transformed concentration, with
concentration being measured in mg/kg bw. For all
species, a dose of 0.98 mg/kg bw will minimize the
likelihood of an adverse response, or maximize the
likelihood of a homeostatic response, emerging from
an excess or deficiency condition, or both. Using
Equation (15}, it is possible to construct a 95% boot-
strap confidence interval for Xsymw pup. Transforming
the upper and lower limits of this interval allows us
to conclude with 95% confidence that xygqn pug lies
between 0.82 and 1.04 mg/kg bw.

5.4.1. Odds of an Adverse Response at Xuyp pug

The odds of a severity score |S| > 2 attributed
to excess at Xy pup are estimated at 0.35; for defi-
ciency, the odds are 0.084. Thus, for a concentration
level of 0.98 mg/kg bw, the chances of realizing such a
severity score for excess and deficiency are 55% and
11%, respectively.
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Fig, 5. Components of the species-stratified JIMED for the Cu tox-
icity database: excess and deficiency logistic regression curves for
humans, mice, and rats,

5.5. Stratification by Species

After the Cu toxicity database was expanded
to convert group-level to individual-level data, stud-
ies conducted on mice and rats comprised an over-
whelming proportion of the database. To perform
a regression analysis with stratification by species,
it was necessary to remove replicates created when
converting group-level to individual-level data, so as
to ensure the independence of observations in the
data set to be analyzed. This provided a data set
with 341 observations. As an initial attempt to fit the
JMED to the somewhat limited human data alone
did not converge, the mice and rat data were modeled
together with the human data to accommodate the
gaps in the human data and facilitate convergence.
Fitting the JMED in Equation (18) to the individual
human, rat, and mice data described above yields the
regression coefficients Bo, B1. B2, B3, - - ., Bo estimated
by —9.5, —4.6, 15.9, 6.4, 3.4, 11.6, —4.9, —4.8, —17.5,
and —13.2, respectively, along with an associated es-
timated covariance matrix.

A plot of the excess and deficiency curves for
each species is provided in Fig. 5. The human excess
and deficiency curves are leftmost in this figure, in-
dicating that humans are most sensitive of the three
species considered, followed by rats, then mice.

5.5.1. Species-Specific EPCPs

Point estimates and 95% standard normal
confidence intervals for species-specific EPCPs are
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Table IV, Point Estimates and 95% Confidence Intervals for the
Species-Specific EPCP’s

EPCP of log,, £pcp 95% S$td
Species Concentration (mg/kg bw) Normal C1
Humans -1.37 0.042 {0.001,0.2)
Mice 0.13 1.4 {0.13,14.1)
Rats -0.24 0.57 (0.04,7.7)

summarized in Table IV. The EPCP for humans
is estimated as —1.37 of the logarithm base 10
transformed concentration, with concentration being
measured in mg/kg bw; similarly, the EPCPs for
mice and rats are estimated to be 0.13 and —0.24,
respectively. At exposure levels of 0.042, 1.4, and
0.57 mg/kg bw, the probability of experiencing an
adverse response due to excess Cu exposure is
equivalent to the probability of experiencing an
adverse response due to Cu deficiency for humans,
mice, and rats, respectively. With 95% confidence,
the EPCP lies between 0.001 and 0.21 mg/kg bw for
humans, 0.13 and 14.1 mg/kg bw for mice, and 0.04
and 7.7 mg/kg bw for rats. Assuming mice weigh
20 g and rats weigh 400 g, the estimates for EPCP
are 0.016 and 0.39 mg/day, respectively, with con-
fidence lLimits 0.003 to 0.28 mg/day and 0.016 to
3.08 mg/day.

Our primary interest is in the results for humans.
The point estimate for EPCP, 0.042 mg/kg bw, may
be understood as the exposure level that provides an
equal chance for Cu toxicity due to either excess or
deficiency. In addition, its confidence interval, 0.001
to 0.21 mg/kg bw, may be interpreted as a range of ex-
posure levels that is 95% likely to provide equiprob-
ability of Cu excess and deficiency. For a human who
weighs 70 kg, this point estimate of the EPCP trans-
forms to 2.94 mg/day, with confidence limits ranging
from 0.07 to 14.7 mg/day.

5.5.2. Odds of an Adverse Response at the
Human EPCP

For humans, the odds of | S| > 2 at an intake level
of 2.94 mg/day are estimated to be 0.045, translating
to a 4.7% chance of an adverse response and a 95.3%
chance of a homeostatic one. While the odds favor
a homeostatic response, the probability of an ad-
verse response at this exposure level appears some-
what high, reflecting a nontrivial risk due to either
excess or deficiency at the EPCP. For mice and rats,
the odds of an adverse response may be computed
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Fig. 6. A U-shaped exposure-response curve for humans caicu-
lated from the species-stratified IMED and IMs. The estimate for
Xvin pup 1S indicated by a red dot and its 95% bootstrap confi-
dence interval is indicated by the red line segment. The human
obaervations used to fit this mode] are indicated in blue. Raw data
are denoted by blue circles.

using the same approach described above (data not
shown).

5.5.3. Species-Specific Xy pug

The JMED fit in Equation (18) allows for the
estimation of Pp,p over the range of exposure levels
for humans, rats, and mice. A plot of the human
U-shaped exposure-response curve superimposed on
the excess and deficiency curves is presented in Fig. 6.
The bootstrap confidence interval and observations
used in the regression analysis are also shown. The
estimates of Xy pug of the logarithm base 10 trans-
formed concentration for humans, mice, and rats,
along with their 95% bootstrap confidence intervals,
are summarized in Table V. Assuming mice weigh
20 g and rats 400 g, the estimates of xyuy pug are 0.02
and 0.48 mg/day for these two species, respectively,
with confidence limits 0.018 to 0.028 mg/day for mice
and 0.456 to 0.81 mg/day for rats.

Table V. Point Estimates and 95% Confidence Intervals for the
Species-Specific Xvm pur’s

K pus Of 108, EMIN DUE 95%

Species Concentration (mg/kg bw) Bootstrap CI
Humans —1.4 0.039 {(0.02,0.06)
Mice 0.2 1.62 {1.51,2.07)
Rats -0.16 0.69 {0.57,0.81)
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Note that bootstrapping was not necessary to
calculate 95% standard normal confidence intervals
for species EPCPs presented in Section 5.5.1. While
computing 95% bootstrap Cls for species Xy pup,
we discovered that approximately 25% of the fitted
bootstrap models yield a warning message. To move
forward with analyses, any fitted bootstrap or repli-
cate model that caused a warning message was ex-
cluded from calculations. Although there were no
convergence issues, this warning message indicates
that there is a concentration threshold that perfectly
separates the data. Peduzzi et al. ™ employed a sim-
ilar approach in their work on the number of events
per variable in logistic regression analysis, where the
authors excluded problematic simulations.

The point estimate for Xygy pug, 0.039 mg/kg bw,
for humans may be interpreted as the exposure level
that minimizes the overall risk of an adverse response
due to either excess or deficiency or both. In addition,
its bootstrap interval, 0.022 to 0.064 mg/kg bw, may
be interpreted as a range of exposure levels that is
95% likely to minimize the overall risk from excess
or deficiency. For a human who weighs 70 kg, this
point estimate transforms to 2.73 mg/day with a 95%
confidence limit of 1.54 to 4.48 mg/day.

Note that a bootstrap approach may also be em-
ployed to calculate a 95% confidence interval for
the EPCP by filtering all fitted models that induce a
warning message. For example, a 95% bootstrap con-
fidence interval for EPCP is 1.02 to 6.68 mg/day.

5.5.4. Odds of an Adverse Response at the Human
XMIN DUE

The odds of an adverse response at an intake
level of 2.73 mg/day attributed to excess and defi-
ciency are estimated by 0.036 and 0.05, respectively,
providing 3.7% and 5.5% chances of a health effect
of |S] = 2.

6. DISCUSSION

This article focuses on the simultaneous mod-
eling of excess and deficiency to characterize the
observed U-shaped exposure-response curve for Cu.
The IM achieves this objective, using the JMED as
the foundation. In fitting these models to the copper
toxicity database studied by Chambers et al,'® a
U-shaped curve was created from the IM when
the probability of an adverse health outcome of
severity |S| > 2 is plotted against the logarithm of
exposure concentration. The IM is derived from the
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JMED with the additional assumption of statistically
independent responses due to excess and deficiency.

Two benchmark exposure levels of interest,
specifically, the EPCP and xymwpup, were investi-
gated. The EPCP reflects the exposure concentration
at which the risk of an adverse outcome due to excess
is equal to that due to deficiency under the IMED;
xaiy pug reflects the exposure concentration at which
the total risk of an adverse outcome due to either
excess or deficiency, or both, is minimized, under the
IM. By definition, the JMED and consequentially
the EPCP consider excess and deficiency as separate
sources of risk. The IM builds on the JMED by
accounting for excess and deficiency together; the
resulting risk estimate, Xmpvoup, minimizes risk
from both excess and deficiency. As a benchmark for
human exposure guidelines, the Xy pup 1S therefore
preferable to the EPCP. Nonetheless, the EPCP may
be a useful indicator of risk in its own right, and pro-
vides an alternative benchmark if the independence
assumption underlying Xy pug 1S questionable.

The inclusion of indicator variables for mice and
rats facilitated species-specific analyses of the IMED
and IM. By adjusting for differences in species
sensifivity, it is possible to conduct combined cate-
gorical regression analyses of severity scored data
from multiple species, thereby allowing data from
other species to inform the development of human
exposure guidelines for agents such as copper that
demonstrate U-shaped exposure-response relation-
ships. The categorical regression models considered
only a limited number of covariates, such as species,
gender, and level of exposure. Application of the
JMED and IM involving additional covariates such
as duration of exposure is straightforward, thereby
permitting the fitting of more complex multivari-
able models when the data permit. In the future,
extensions to the categorical regression modeling
techniques introduced in this article may be devel-
oped, including, for example, the incorporation of
random effects to model possibly correlated data.?”

The Agency for Toxic Substances and Disease
Registry (ATSDR) estimates humans receive be-
tween 1.0 and 1.3 mg Cu/day from food intake and
has identified a minimum risk level (MRL) of 0.7
mg Cw/day.*® An MRL is defined as an estimate of
daily human exposure to a substance that is likely
to be without an appreciable risk of adverse ef-
fects over a specified duration of exposure.*) The
Institute of Medicine (IOM) has established a rec-
ommended dietary allowance (RDA) and upper in-
take level of 0.9 mg Cuw/day and 10 mg Cu/day,
respectively. The methods presented in this article
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were developed for agents known to exhibit toxic-
ity for both excess and deficiency; since the copper
database was simply an application of the methods
presented herein, we had not intended that EPCP
and Xy~ pp based on the JMED and IM be directly
compared to the RDA level established by the IOM.
However, the xygnpue and EPCP risk estimates,
along with their confidence intervals, produced by
the JMED and IM align well with current human
exposure guidelines, demonstrating the promise of
this new approach to modeling U-shaped exposure-
response relationships. The value of Xy s based
on the IM could be considered as the optimal intake
level, minimizing the joint risks associated with ex-
cess and deficiency. For a human who weighs 70 kg,
the xypepus 18 2.7 mg Cu/day. An intake level of
2.7 mg Cu/day minimizes the overall risks attributed
to either excess or deficiency (or both). Our results
suggest that no level of copper intake is without some
risk. This arises because there are offsetting risks as-
sociated with either excess or deficient intake. At the
optimal estimated intake, 2.7 mg Cu/day, the prob-
ability of evidence for biochemical changes being
noted in test subjects is 3.7% due to this level being
too high for some subjects and 5.6% due to it being
too low in other subjects. Although increasing intake
would reduce the risk from a low copper intake, this
would also lead to an increased risk due to the higher
copper intake. The clinical and long-term health im-
plications of these observations require further re-
search. In particular, it would be useful to explore
the long-term impact of slightly low or high copper
intake in a large sample size, with long-term obser-
vations. The analyses could be adjusted to include a
weighting for the severity of the outcomes that would
lead to an adjusted optimal intake.

Rather than focus entirely on a single optimal in-
take level, it may be more appropriate to consider an
acceptable range of copper intake, allowing for un-
certainties in the data and interindividual variability
in the response. One possible approach to identifying
a reasonable range of exposures would be to base
the range on confidence limits around XN pup.
To avoid asymptotic approximation, a bootstrap
confidence interval procedure, which is based on the
finite sample distribution, is preferred. Although not
considered in the present work, another approach
to computing confidence intervals could be based
on the asymptotic chi-square distribution of the
likelihood ratio. Our 95% bootstrap confidence
interval on X pur suggests an acceptable range of
oral intake between 1.54 and 4.48 mg Cu/day, based
on the IM. This is compatible to previous work by
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Chambers et al,'® using the separate models for
excess and deficiency, where the single optimal
intake level for humans was estimated to be 2.6 mg
Cu/day with uncertainty limits ranging from 1.8 to
3.1 mg Cu/day.

In conclusion, the JMED and IM presented here
appear to offer considerable promise in describing
U-shaped exposure-response relationships for es-
sential elements such as copper. These models
can be used to derive human exposure guidelines,
expressed in the form of an optimal intake level,
XmiN pups OF as a range of allowable oral intakes.
The categorical regression techniques used in fitting
these models permit a combined analysis of multiple
endpoints from multiple studies using a severity
scoring system to place diverse endpoints on a
common scale. Chemicals with a smaller knowledge
base may not have the information to support such a
detailed severity scoring system. The construction of
severity categories will depend on the toxicological
endpoints of interest. If severity categories are not
well separated, it may be preferable to use a smaller
number of categories."” Complex models that
incorporate stratification by species, gender, or other
factors may be used when the data permit. Data from
multiple species can also be used to augment the
available human data, with appropriate adjustments
for species differences in sensitivity to the agent
of interest. Further experience in the application
of this technique to agents other than copper—the
example chosen for presentation here because of
the availability of a comprehensive copper toxicity
database—would serve to explore the utility of the
modeling methods introduced here across a range
of agents that can lead to toxicity in humans due to
both excess and deficiency.
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